Search results
Results From The WOW.Com Content Network
Earth constantly absorbs energy from sunlight and emits thermal radiation as infrared light. In the long run, Earth radiates the same amount of energy per second as it absorbs, because the amount of thermal radiation emitted depends upon temperature: If Earth absorbs more energy per second than it radiates, Earth heats up and the thermal radiation will increase, until balance is restored; if ...
The stratosphere is the second-lowest layer of Earth's atmosphere. It lies above the troposphere and is separated from it by the tropopause. This layer extends from the top of the troposphere at roughly 12 km (7.5 mi; 39,000 ft) above Earth's surface to the stratopause at an altitude of about 50 to 55 km (31 to 34 mi; 164,000 to 180,000 ft).
The five components of the climate system all interact. They are the atmosphere, the hydrosphere, the cryosphere, the lithosphere and the biosphere. [1]: 1451 Earth's climate system is a complex system with five interacting components: the atmosphere (air), the hydrosphere (water), the cryosphere (ice and permafrost), the lithosphere (earth's upper rocky layer) and the biosphere (living things).
The one-level atmospheric model can be readily extended to a multiple-layer atmosphere. [8] [9] In this case the equations for the temperatures become a series of coupled equations. These simple energy-balance models always predict a decreasing temperature away from the surface, and all levels increase in temperature as "greenhouse gases are ...
Dimensionless models have also been constructed with functionally separated atmospheric layers from the surface. The simplest of these is the zero-dimensional, one-layer model, [19] which may be readily extended to an arbitrary number of atmospheric layers. The surface and atmospheric layer(s) are each characterized by a corresponding ...
The named layers of the atmosphere apply only to the measured temperature profile, because their definition relies on the presence of inversions. A multi-layered model of a greenhouse atmosphere will produce predicted temperatures for the atmosphere that decrease with height, asymptotically approaching the skin temperature at high altitudes. [3]
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
Climatology is the study of atmospheric changes (both long and short-term) that define average climates and their change over time climate variability. Aeronomy is the study of the upper layers of the atmosphere, where dissociation and ionization are important.