Ads
related to: camber alignment kit
Search results
Results From The WOW.Com Content Network
Camber is the angle which the vertical axis of the wheel makes with the vertical axis of the vehicle. This angle is very important for the cornering performance of the vehicles. Generally, a Camber around 0.5-2 degrees is given on the vehicles. Depending upon wheel orientation, Camber can be of three types. 1. Positive Camber
The 1960 Milliken MX1 Camber Car has a large negative camber. Camber angle is one of the angles made by the wheels of a vehicle; specifically, it is the angle between the vertical axis of a wheel and the vertical axis of the vehicle when viewed from the front or rear.
Change in camber due to cornering forces can cause loss of rear-wheel adhesion leading to oversteer—a dynamically unstable condition that can cause a vehicle to spin. This is an especially severe problem when a swing axle is used in a rear-engine design, because of the greater side-g forces on the rear wheels from the mass of the engine.
De Dion suspension characteristics: Camber change on one-sided bumps, none on rebound. The de Dion tube is shown in blue. The differential (yellow) is connected directly to the chassis (orange). Universal joints are shown in green. De Dion rear axle. A de Dion axle is a form of non-independent automobile suspension
The arms have to control camber, particularly the way that the camber changes as the wheel moves up (into jounce, or bump) and down into rebound or droop. Side view: The arms have to transmit traction and braking loads, usually accomplished via a longitudinal link. They also have to control caster. Note that brake torques also have to be ...
The upper arm is usually shorter to induce negative camber as the suspension jounces (rises), and often this arrangement is titled an "SLA" or "short, long arms" suspension. When the vehicle is in a turn, body roll results in positive camber gain on the lightly loaded inside wheel, while the heavily loaded outer wheel gains negative camber.