Ad
related to: sig fig exponents and logs video for 5th graders
Search results
Results From The WOW.Com Content Network
The digits in the base and exponent (10 3 or 10 −2) are considered exact numbers so for these digits, significant figures are irrelevant. Explicitly state the number of significant figures (the abbreviation s.f. is sometimes used): For example "20 000 to 2 s.f." or "20 000 (2 sf)".
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number.For example, the logarithm of 1000 to base 10 is 3, because 1000 is 10 to the 3 rd power: 1000 = 10 3 = 10 × 10 × 10.
The top left graph is linear in the X- and Y-axes, and the Y-axis ranges from 0 to 10. A base-10 log scale is used for the Y-axis of the bottom left graph, and the Y-axis ranges from 0.1 to 1000. The top right graph uses a log-10 scale for just the X-axis, and the bottom right graph uses a log-10 scale for both the X axis and the Y-axis.
The mathematical notation for using the common logarithm is log(x), [4] log 10 (x), [5] or sometimes Log(x) with a capital L; [a] on calculators, it is printed as "log", but mathematicians usually mean natural logarithm (logarithm with base e ≈ 2.71828) rather than common logarithm when writing "log".
I think the example for logarithms in the Arithmetic section is wrong: 3.000 has 4 significant figures, and if the number of digits in the mantissa should be equal to the number of significant figures, then log(3.000×10^4)= 4.4771 (4 decimals), rather than 4.48 (2 decimals).
The notation convention chosen here (with W 0 and W −1) follows the canonical reference on the Lambert W function by Corless, Gonnet, Hare, Jeffrey and Knuth. [3]The name "product logarithm" can be understood as follows: since the inverse function of f(w) = e w is termed the logarithm, it makes sense to call the inverse "function" of the product we w the "product logarithm".
The inverse of the double exponential function is the double logarithm log(log(x)). The complex double exponential function is entire , because it is the composition of two entire functions f ( x ) = a x = e x ln a {\displaystyle f(x)=a^{x}=e^{x\ln a}} and g ( x ) = b x = e x ln b {\displaystyle g(x)=b^{x}=e^{x\ln b}} .