Ads
related to: what is eccentricity in math example definition geometry worksheet
Search results
Results From The WOW.Com Content Network
In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.
Angular eccentricity is one of many parameters which arise in the study of the ellipse or ellipsoid. It is denoted here by α (alpha). It is denoted here by α (alpha). It may be defined in terms of the eccentricity , e , or the aspect ratio, b/a (the ratio of the semi-minor axis and the semi-major axis ):
The eccentricity e is defined as: = . From Pythagoras's theorem applied to the triangle with r (a distance FP) as hypotenuse: = + () = () + ( + ) = + = () Thus, the radius (distance from the focus to point P) is related to the eccentric anomaly by the formula
Horizontal eccentricity, in vision, degrees of visual angle from the center of the eye; Eccentric contraction, the lengthening of muscle fibers; Eccentric position of a surveying tripod, to be able to measure hidden points; Eccentric training, the motion of an active muscle while it is lengthening under load; Eccentricity, a deviation from ...
The eccentricity ϵ(v) of a vertex v is the greatest distance between v and any other vertex; in symbols, = (,). It can be thought of as how far a node is from the node most distant from it in the graph. The radius r of a graph is the minimum eccentricity of any vertex or, in symbols,
The usual notation for flattening is and its definition in terms of the semi-axes and of the resulting ellipse or ellipsoid is f = a − b a . {\displaystyle f={\frac {a-b}{a}}.} The compression factor is b / a {\displaystyle b/a} in each case; for the ellipse, this is also its aspect ratio .
Roundness is dominated by the shape's gross features rather than the definition of its edges and corners, or the surface roughness of a manufactured object. A smooth ellipse can have low roundness, if its eccentricity is large. Regular polygons increase their roundness with increasing numbers of sides, even though they are still sharp-edged.
In mathematics, equivalent definitions are used in two somewhat different ways. First, within a particular mathematical theory (for example, Euclidean geometry ), a notion (for example, ellipse or minimal surface ) may have more than one definition.