When.com Web Search

  1. Ads

    related to: graphing with complex numbers worksheet pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Domain coloring - Wikipedia

    en.wikipedia.org/wiki/Domain_coloring

    Domain coloring plot of the function f(x) = ⁠ (x 2 − 1)(x − 2 − i) 2 / x 2 + 2 + 2i ⁠, using the structured color function described below.. In complex analysis, domain coloring or a color wheel graph is a technique for visualizing complex functions by assigning a color to each point of the complex plane.

  3. Tetraview - Wikipedia

    en.wikipedia.org/wiki/Tetraview

    A graph of a real function of a real variable is the set of ordered pairs (x,y) such that y = f(x). This is the ordinary two-dimensional Cartesian graph studied in school algebra. Every complex number has both a real part and an imaginary part, so one complex variable is two-dimensional and a BBC pair of complex variables is four-dimensional. A ...

  4. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.

  5. Complex plane - Wikipedia

    en.wikipedia.org/wiki/Complex_plane

    In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal x-axis, called the real axis, is formed by the real numbers, and the vertical y-axis, called the imaginary axis, is formed by the imaginary numbers. The complex plane allows for a geometric interpretation of ...

  6. Template : Quadratic function graph complex roots.svg

    en.wikipedia.org/wiki/Template:Quadratic...

    Visualisation of the complex roots of y = ax 2 + bx + c: the parabola is rotated 180° about its vertex (orange). Its x-intercepts are rotated 90° around their mid-point, and the Cartesian plane is interpreted as the complex plane (green).

  7. Complex logarithm - Wikipedia

    en.wikipedia.org/wiki/Complex_logarithm

    A complex-valued function :, defined on some subset of the set of nonzero complex numbers, satisfying ⁡ = for all in . Such complex logarithm functions are analogous to the real logarithm function ln : R > 0 → R {\displaystyle \ln \colon \mathbb {R} _{>0}\to \mathbb {R} } , which is the inverse of the real exponential function and hence ...