When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Creep and shrinkage of concrete - Wikipedia

    en.wikipedia.org/.../Creep_and_shrinkage_of_concrete

    Concrete creep is essentially the sagging of concrete over time. Creep and shrinkage of concrete are two physical properties of concrete.The creep of concrete, which originates from the calcium silicate hydrates (C-S-H) in the hardened Portland cement paste (which is the binder of mineral aggregates), is fundamentally different from the creep of metals and polymers.

  3. Concrete cone failure - Wikipedia

    en.wikipedia.org/wiki/Concrete_cone_failure

    The tension failure loads predicted by the CCD method fits experimental results over a wide range of embedment depth (e.g. 100 – 600 mm). [2] Anchor load bearing capacity provided by ACI 349 does not consider size effect, thus an underestimated value for the load-carrying capacity is obtained for large embedment depths.

  4. Size effect on structural strength - Wikipedia

    en.wikipedia.org/wiki/Size_Effect_on_Structural...

    For most normal-scale applications to metals and fine-grained ceramics, except for micrometer scale devices, the size is large enough for the Weibull theory to apply (but not for coarse-grained materials such as concrete). From Eq. 2 one can show that the mean strength and the coefficient of variation of strength are obtained as follows:

  5. Properties of concrete - Wikipedia

    en.wikipedia.org/wiki/Properties_of_concrete

    Twenty eight days is a long wait to determine if desired strengths are going to be obtained, so three-day and seven-day strengths can be useful to predict the ultimate 28-day compressive strength of the concrete. A 25% strength gain between 7 and 28 days is often observed with 100% OPC (ordinary Portland cement) mixtures, and between 25% and 40 ...

  6. Schmidt hammer - Wikipedia

    en.wikipedia.org/wiki/Schmidt_hammer

    The test hammer hits the concrete at a defined energy. Its rebound is dependent on the hardness of the concrete and is measured by the test equipment. By reference to a conversion chart, the rebound value can be used to determine the concrete's compressive strength. When conducting the test, the hammer should be held at right angles to the ...

  7. Types of concrete - Wikipedia

    en.wikipedia.org/wiki/Types_of_concrete

    High-strength concrete has a compressive strength greater than 40 MPa (6000 psi). In the UK, BS EN 206-1 [3] defines High strength concrete as concrete with a compressive strength class higher than C50/60. High-strength concrete is made by lowering the water-cement (W/C) ratio to 0.35 or lower.

  8. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...

  9. Calcium silicate hydrate - Wikipedia

    en.wikipedia.org/wiki/Calcium_silicate_hydrate

    When water is added to cement, each of the compounds undergoes hydration and contributes to the final state of the concrete. [2] Only calcium silicates contribute to the strength. Tricalcium silicate is responsible for most of the early strength (first 7 days). [3] Dicalcium silicate, which reacts more slowly, only contributes to late strength.