When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Creep and shrinkage of concrete - Wikipedia

    en.wikipedia.org/.../Creep_and_shrinkage_of_concrete

    Concrete creep is essentially the sagging of concrete over time. Creep and shrinkage of concrete are two physical properties of concrete.The creep of concrete, which originates from the calcium silicate hydrates (C-S-H) in the hardened Portland cement paste (which is the binder of mineral aggregates), is fundamentally different from the creep of metals and polymers.

  3. Strain hardening exponent - Wikipedia

    en.wikipedia.org/wiki/Strain_hardening_exponent

    In one study, strain hardening exponent values extracted from tensile data from 58 steel pipes from natural gas pipelines were found to range from 0.08 to 0.25, [1] with the lower end of the range dominated by high-strength low alloy steels and the upper end of the range mostly normalized steels.

  4. Rockwell hardness test - Wikipedia

    en.wikipedia.org/wiki/Rockwell_hardness_test

    The superficial Rockwell scales use lower loads and shallower impressions on brittle and very thin materials. The 45N scale employs a 45-kgf load on a diamond cone-shaped Brale indenter, and can be used on dense ceramics. The 15T scale employs a 15-kgf load on a 1 ⁄ 16-inch-diameter (1.588 mm) hardened steel ball, and can be used on sheet metal.

  5. Calcium silicate hydrate - Wikipedia

    en.wikipedia.org/wiki/Calcium_silicate_hydrate

    When water is added to cement, each of the compounds undergoes hydration and contributes to the final state of the concrete. [2] Only calcium silicates contribute to the strength. Tricalcium silicate is responsible for most of the early strength (first 7 days). [3] Dicalcium silicate, which reacts more slowly, only contributes to late strength.

  6. Vickers hardness test - Wikipedia

    en.wikipedia.org/wiki/Vickers_hardness_test

    If HV is first expressed in N/mm 2 (MPa), or otherwise by converting from kgf/mm 2, then the tensile strength (in MPa) of the material can be approximated as σ u ≈ HV/ c, where c is a constant determined by yield strength, Poisson's ratio, work-hardening exponent and geometrical factors – usually ranging between 2 and 4. [9]

  7. Properties of concrete - Wikipedia

    en.wikipedia.org/wiki/Properties_of_concrete

    Twenty eight days is a long wait to determine if desired strengths are going to be obtained, so three-day and seven-day strengths can be useful to predict the ultimate 28-day compressive strength of the concrete. A 25% strength gain between 7 and 28 days is often observed with 100% OPC (ordinary Portland cement) mixtures, and between 25% and 40 ...

  8. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    The stress that is calculated to develop in a member is compared to the strength of the material from which the member is made by calculating the ratio of the strength of the material to the calculated stress. The ratio must obviously be greater than 1.0 if the member is to not fail.

  9. Concrete - Wikipedia

    en.wikipedia.org/wiki/Concrete

    The early strength of the concrete can be increased if it is kept damp during the curing process. Minimizing stress prior to curing minimizes cracking. High-early-strength concrete is designed to hydrate faster, often by increased use of cement that increases shrinkage and cracking. The strength of concrete changes (increases) for up to three ...