Search results
Results From The WOW.Com Content Network
Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...
One set is said to intersect another set if . Sets that do not intersect are said to be disjoint . The power set of X {\displaystyle X} is the set of all subsets of X {\displaystyle X} and will be denoted by ℘ ( X ) = def { L : L ⊆ X } . {\displaystyle \wp (X)~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\{~L~:~L\subseteq X~\}.}
A disjoint union of an indexed family of sets (:) is a set , often denoted by , with an injection of each into , such that the images of these injections form a partition of (that is, each element of belongs to exactly one of these images). A disjoint union of a family of pairwise disjoint sets is their union.
The intersection of the sets {1, 2, 3} and {2, 3, 4} is {2, 3}. ... Intersecting and disjoint sets. We say ... Symmetric difference – Elements in exactly one of two ...
Symmetric difference of sets A and B, denoted A B or A ⊖ B, is the set of all objects that are a member of exactly one of A and B (elements which are in one of the sets, but not in both). For instance, for the sets {1, 2, 3} and {2, 3, 4}, the symmetric difference set is {1, 4}.
A partition of a set X is a set of non-empty subsets of X such that every element x in X is in exactly one of these subsets [2] (i.e., the subsets are nonempty mutually disjoint sets). Equivalently, a family of sets P is a partition of X if and only if all of the following conditions hold: [3]
However, the unit interval [0, 1] and the set of rational numbers Q are not almost disjoint, because their intersection is infinite. This definition extends to any collection of sets. A collection of sets is pairwise almost disjoint or mutually almost disjoint if any two distinct sets in the collection are almost disjoint. Often the prefix ...
In computability theory, two disjoint sets of natural numbers are called computably inseparable or recursively inseparable if they cannot be "separated" with a computable set. [1] These sets arise in the study of computability theory itself, particularly in relation to Π 1 0 {\displaystyle \Pi _{1}^{0}} classes .