Search results
Results From The WOW.Com Content Network
Change in volume with increasing ethanol fraction. The molar volume of a substance i is defined as its molar mass divided by its density ρ i 0: , = For an ideal mixture containing N components, the molar volume of the mixture is the weighted sum of the molar volumes of its individual components.
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]
In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]
Chemical formula Molecular weight (MW) Elemental mass fraction Valencies (V) Sample Reference Weight Compound weight to elemental mEq Potassium (reference) K 39.098 g/mol 100% 1 (K +) 3000 mg 3000*1/39.098=77 mEq K + Potassium citrate monohydrate C 6 H 7 K 3 O 8: 324.41 g/mol 36.16% 3 (K +) Tolerable DRI for potassium dietary supplements [4] [5 ...
Mathematically, density is defined as mass divided by volume: [1] =, where ρ is the density, m is the mass, and V is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume , [ 2 ] although this is scientifically inaccurate – this quantity is more ...
In atmospheric chemistry, mixing ratio usually refers to the mole ratio r i, which is defined as the amount of a constituent n i divided by the total amount of all other constituents in a mixture: = The mole ratio is also called amount ratio. [2]
In lay terms, the stoichiometric coefficient of any given component is the number of molecules and/or formula units that participate in the reaction as written. A related concept is the stoichiometric number (using IUPAC nomenclature), wherein the stoichiometric coefficient is multiplied by +1 for all products and by −1 for all reactants.