Search results
Results From The WOW.Com Content Network
Adverse yaw is the natural and undesirable tendency for an aircraft to yaw in the opposite direction of a roll.It is caused by the difference in lift and drag of each wing. The effect can be greatly minimized with ailerons deliberately designed to create drag when deflected upward and/or mechanisms which automatically apply some amount of coordinated rudde
Spoiler controls can be used for roll control (outboard or mid-span spoilers) or descent control (inboard spoilers). Some aircraft use spoilers in combination with or in lieu of ailerons for roll control, primarily to reduce adverse yaw when rudder input is limited by higher speeds.
Using ailerons causes adverse yaw, meaning the nose of the aircraft yaws in a direction opposite to the aileron application. When moving the aileron control to bank the wings to the left, adverse yaw moves the nose of the aircraft to the right. Adverse yaw is most pronounced in low-speed aircraft with long wings, such as gliders.
The asymmetric lift causes asymmetric drag, which causes the aircraft to yaw adversely. To correct the yaw, the pilot uses the rudder to perform a coordinated turn. In a multi-engined aircraft, the loss of thrust in one engine can also cause adverse yaw, and here again the rudder is used to regain coordinated flight.
The yaw motion is induced through the use of ailerons alone due to aileron drag, wherein the lifting wing (aileron down) is doing more work than the descending wing (aileron up) and therefore creates more drag, forcing the lifting wing back, yawing the aircraft toward it. This yawing effect produced by rolling motion is known as adverse yaw.
A Dutch roll is a maneuver that involves simultaneous yaw (side-to-side motion across a flat horizontal plane) and roll (see-saw motion over a horizontal plane).
An unwanted side effect of aileron operation is adverse yaw—a yawing moment in the opposite direction to the roll. Using the ailerons to roll an aircraft to the right produces a yawing motion to the left. As the aircraft rolls, adverse yaw is caused partly by the change in drag between the left and right wing.
Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw.