Search results
Results From The WOW.Com Content Network
The equation defining a plane curve expressed in polar coordinates is known as a polar equation. In many cases, such an equation can simply be specified by defining r as a function of φ. The resulting curve then consists of points of the form (r(φ), φ) and can be regarded as the graph of the polar function r.
Two Dimensional Curves; Visual Dictionary of Special Plane Curves; Curves and Surfaces Index (Harvey Mudd College) National Curve Bank; An elementary treatise on cubic and quartic curves by Alfred Barnard Basset (1901) online at Google Books
The p-th polar of a C for a natural number p is defined as Δ Q p f(x, y, z) = 0. This is a curve of degree n−p. When p is n−1 the p-th polar is a line called the polar line of C with respect to Q. Similarly, when p is n−2 the curve is called the polar conic of C.
A polar diagram could refer to: Polar area diagram, a type of pie chart; Radiation pattern, in antenna theory; A diagram based on polar coordinates; Spherical coordinate system, the three-dimensional form of a polar response curve; In sailing, a Polar diagram is a graph that shows a sailing boats potential wind speed over a range of wind and ...
[1] [2] More than a century later, the curve was discussed by Descartes (1638), and later extensively investigated by Jacob Bernoulli, who called it Spira mirabilis, "the marvelous spiral". The logarithmic spiral is distinct from the Archimedean spiral in that the distances between the turnings of a logarithmic spiral increase in a geometric ...
Graphs of roses are composed of petals.A petal is the shape formed by the graph of a half-cycle of the sinusoid that specifies the rose. (A cycle is a portion of a sinusoid that is one period T = 2π / k long and consists of a positive half-cycle, the continuous set of points where r ≥ 0 and is T / 2 = π / k long, and a negative half-cycle is the other half where r ...
Archimedean spiral represented on a polar graph The Archimedean spiral has the property that any ray from the origin intersects successive turnings of the spiral in points with a constant separation distance (equal to 2 πb if θ is measured in radians ), hence the name "arithmetic spiral".
If two lines a and k pass through a single point Q, then the polar q of Q joins the poles A and K of the lines a and k, respectively. The concepts of a pole and its polar line were advanced in projective geometry. For instance, the polar line can be viewed as the set of projective harmonic conjugates of a given point, the pole, with respect to ...