Search results
Results From The WOW.Com Content Network
The goal of a cardinal assignment is to assign to every set A a specific, unique set that is only dependent on the cardinality of A. This is in accordance with Cantor 's original vision of cardinals: to take a set and abstract its elements into canonical "units" and collect these units into another set, such that the only thing special about ...
One-to-many: order ←→ line item: 1: 1..* or + An order contains at least one item Many-to-one: person ←→ birthplace: 1..* or + 1: Many people can be born in the same place, but 1 person can only be born in 1 birthplace Many-to-many: course ←→ student: 1..* or + 1..* or + Students follow various courses Many-to-many (optional on both ...
The most frequently used cardinal function is the function that assigns to a set A its cardinality, denoted by |A|. Aleph numbers and beth numbers can both be seen as cardinal functions defined on ordinal numbers. Cardinal arithmetic operations are examples of functions from cardinal numbers (or pairs of them) to cardinal numbers.
In computer science, the count-distinct problem [1] (also known in applied mathematics as the cardinality estimation problem) is the problem of finding the number of distinct elements in a data stream with repeated elements. This is a well-known problem with numerous applications.
The category < of sets of cardinality less than and all functions between them is closed under colimits of cardinality less than . κ {\displaystyle \kappa } is a regular ordinal (see below). Crudely speaking, this means that a regular cardinal is one that cannot be broken down into a small number of smaller parts.
For example, think of A as Authors, and B as Books. An Author can write several Books, and a Book can be written by several Authors. In a relational database management system, such relationships are usually implemented by means of an associative table (also known as join table, junction table or cross-reference table), say, AB with two one-to-many relationships A → AB and B → AB.
The notion of cardinality, as now understood, was formulated by Georg Cantor, the originator of set theory, in 1874–1884. Cardinality can be used to compare an aspect of finite sets. For example, the sets {1,2,3} and {4,5,6} are not equal, but have the same cardinality, namely three.
Also, is the smallest uncountable ordinal (to see that it exists, consider the set of equivalence classes of well-orderings of the natural numbers; each such well-ordering defines a countable ordinal, and is the order type of that set), is the smallest ordinal whose cardinality is greater than , and so on, and is the limit of for natural ...