Search results
Results From The WOW.Com Content Network
Exponentiation with negative exponents is defined by the following identity, which holds for any integer n and nonzero b: =. [1] Raising 0 to a negative exponent is undefined but, in some circumstances, it may be interpreted as infinity (). [24]
Python uses the ** operator for exponentiation. Python uses the + operator for string concatenation. Python uses the * operator for duplicating a string a specified number of times. The @ infix operator is intended to be used by libraries such as NumPy for matrix multiplication. [104] [105]
Python supports normal floating point numbers, which are created when a dot is used in a literal (e.g. 1.1), when an integer and a floating point number are used in an expression, or as a result of some mathematical operations ("true division" via the / operator, or exponentiation with a negative exponent).
Because modular exponentiation is an important operation in computer science, and there are efficient algorithms (see above) that are much faster than simply exponentiating and then taking the remainder, many programming languages and arbitrary-precision integer libraries have a dedicated function to perform modular exponentiation: Python's ...
If exponentiation is indicated by stacked symbols using superscript notation, the usual rule is to work from the top down: [2] [7] a b c = a (b c) which typically is not equal to (a b) c. This convention is useful because there is a property of exponentiation that (a b) c = a bc, so it's unnecessary to use serial exponentiation for this.
Exponentiation and primality testing are primitive recursive. Given primitive recursive functions e {\displaystyle e} , f {\displaystyle f} , g {\displaystyle g} , and h {\displaystyle h} , a function that returns the value of g {\displaystyle g} when e ≤ f {\displaystyle e\leq f} and the value of h {\displaystyle h} otherwise is primitive ...
Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation. These can be of quite general use, for example in modular arithmetic or powering of matrices. For semigroups for which additive notation is commonly used, like elliptic curves used in cryptography , this method is also referred to as double-and-add .
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab