When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Examples of cyclic quadrilaterals. In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle.This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic.

  3. Miquel's theorem - Wikipedia

    en.wikipedia.org/wiki/Miquel's_theorem

    The theorem (and its corollary) follow from the properties of cyclic quadrilaterals. ... Pedoe, Dan (1988) [1970], Geometry / A Comprehensive Course, ...

  4. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral [1] and inscribed and circumscribed quadrilateral.

  5. Right kite - Wikipedia

    en.wikipedia.org/wiki/Right_kite

    In Euclidean geometry, a right kite is a kite (a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other) that can be inscribed in a circle. [1] That is, it is a kite with a circumcircle (i.e., a cyclic kite). Thus the right kite is a convex quadrilateral and has two opposite right ...

  6. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    A convex quadrilateral is cyclic if and only if opposite angles sum to 180°. Right kite: a kite with two opposite right angles. It is a type of cyclic quadrilateral. Harmonic quadrilateral: a cyclic quadrilateral such that the products of the lengths of the opposing sides are equal. Bicentric quadrilateral: it is both tangential and cyclic.

  7. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    This is not a cyclic quadrilateral. The equality never holds here, and is unequal in the direction indicated by Ptolemy's inequality. The equation in Ptolemy's theorem is never true with non-cyclic quadrilaterals. Ptolemy's inequality is an extension of this fact, and it is a more general form of Ptolemy's theorem.

  8. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    [15] [16] The right kites are exactly the kites that are cyclic quadrilaterals, meaning that there is a circle that passes through all their vertices. [17] The cyclic quadrilaterals may equivalently defined as the quadrilaterals in which two opposite angles are supplementary (they add to 180°); if one pair is supplementary the other is as well ...

  9. Catalogue of Triangle Cubics - Wikipedia

    en.wikipedia.org/wiki/Catalogue_of_Triangle_Cubics

    Tucker cubic (cubic K011 in the Catalogue) of triangle ABC drawn using the GeoGebra command Cubic(A,B,C,11). GeoGebra, the software package for interactive geometry, algebra, statistics and calculus application has a built-in tool for drawing the cubics listed in the Catalogue. [3] The command Cubic( <Point>, <Point>, <Point>, n)