When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...

  3. Category:Integer factorization algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Integer...

    Download as PDF; Printable version; ... Euler's factorization method; F. Factor base; Fast Library for Number Theory; Fermat's factorization method; G.

  4. Quadratic sieve - Wikipedia

    en.wikipedia.org/wiki/Quadratic_sieve

    To factorize the integer n, Fermat's method entails a search for a single number a, n 1/2 < a < n−1, such that the remainder of a 2 divided by n is a square. But these a are hard to find. The quadratic sieve consists of computing the remainder of a 2 /n for several a, then finding a subset of these whose product is a square. This will yield a ...

  5. Dixon's factorization method - Wikipedia

    en.wikipedia.org/wiki/Dixon's_factorization_method

    Dixon's method is based on finding a congruence of squares modulo the integer N which is intended to factor. Fermat's factorization method finds such a congruence by selecting random or pseudo-random x values and hoping that the integer x 2 mod N is a perfect square (in the integers):

  6. Shanks's square forms factorization - Wikipedia

    en.wikipedia.org/wiki/Shanks's_square_forms...

    Shanks' square forms factorization is a method for integer factorization devised by Daniel Shanks as an improvement on Fermat's factorization method. The success of Fermat's method depends on finding integers x {\displaystyle x} and y {\displaystyle y} such that x 2 − y 2 = N {\displaystyle x^{2}-y^{2}=N} , where N {\displaystyle N} is the ...

  7. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]

  8. Pierre de Fermat - Wikipedia

    en.wikipedia.org/wiki/Pierre_de_Fermat

    It was while researching perfect numbers that he discovered Fermat's little theorem. He invented a factorization methodFermat's factorization method—and popularized the proof by infinite descent, which he used to prove Fermat's right triangle theorem which includes as a corollary Fermat's Last Theorem for the case n = 4.

  9. Pollard's rho algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm

    He used the same core ideas as Pollard but a different method of cycle detection, replacing Floyd's cycle-finding algorithm with the related Brent's cycle finding method. [3] CLRS gives a heuristic analysis and failure conditions (the trivial divisor is found). [2] A further improvement was made by Pollard and Brent.