Search results
Results From The WOW.Com Content Network
A control loop is the fundamental building block of control systems in general and industrial control systems in particular. It consists of the process sensor, the controller function, and the final control element (FCE) which controls the process necessary to automatically adjust the value of a measured process variable (PV) to equal the value of a desired set-point (SP).
The control action is the switching on/off of the boiler, but the controlled variable should be the building temperature, but is not because this is open-loop control of the boiler, which does not give closed-loop control of the temperature. In closed loop control, the control action from the controller is dependent on the process output.
The control action is the switching on/off of the boiler, but the controlled variable should be the building temperature, but is not because this is open-loop control of the boiler, which does not give closed-loop control of the temperature. In closed loop control, the control action from the controller is dependent on the process output.
Example of a single industrial control loop; showing continuously modulated control of process flow. A closed-loop controller or feedback controller is a control loop which incorporates feedback, in contrast to an open-loop controller or non-feedback controller. A closed-loop controller uses feedback to control states or outputs of a dynamical ...
The system diagram for representing control loops is a Piping and instrumentation diagram. Commonly used control systems include programmable logic controller (PLC), Distributed Control System (DCS) or SCADA. Example of level control system of a continuous stirred-tank reactor. The flow control into the tank would be cascaded off the level control.
Example of a single industrial control loop; showing continuously modulated control of process flow. Piping and instrumentation diagram of pump with storage tank. Symbols according to EN ISO 10628 and EN 62424. A more complex example of a P&ID. A piping and instrumentation diagram (P&ID) is defined as follows:
The control system performance can be improved by combining the feedback (or closed-loop) control of a PID controller with feed-forward (or open-loop) control. Knowledge about the system (such as the desired acceleration and inertia) can be fed forward and combined with the PID output to improve the overall system performance.
A feedback control loop is directly controlled by the RTU or PLC, but the SCADA software monitors the overall performance of the loop. For example, a PLC may control the flow of cooling water through part of an industrial process to a set point level, but the SCADA system software will allow operators to change the set points for the flow.