Search results
Results From The WOW.Com Content Network
For example, in geology, percolation refers to filtration of water through soil and permeable rocks. The water flows to recharge the groundwater in the water table and aquifers . In places where infiltration basins or septic drain fields are planned to dispose of substantial amounts of water, a percolation test is needed beforehand to determine ...
Examples can be found not only in physical phenomena, but also in biology, neuroscience, ecology (e.g. evolution), and economics (e.g. diffusion of innovation). Percolation can be considered to be a branch of the study of dynamical systems or statistical mechanics. In particular, percolation networks exhibit a phase change around a critical ...
Bernoulli (bond) percolation on complete graphs is an example of a random graph. The critical probability is p = 1 / N , where N is the number of vertices (sites) of the graph. Bootstrap percolation removes active cells from clusters when they have too few active neighbors, and looks at the connectivity of the remaining cells.
A percolation test (colloquially called a perc test) is a test to determine the water absorption rate of soil (that is, its capacity for percolation) in preparation for the building of a septic drain field (leach field) or infiltration basin. [1] The results of a percolation test are required to design a septic system properly.
The examples and perspective in this article deal primarily with the English-speaking world and do not represent a worldwide view of the subject. You may improve this article, discuss the issue on the talk page, or create a new article, as appropriate. (March 2022) (Learn how and when to remove this message)
In hydrology, throughflow, a subtype of interflow (percolation), is the lateral unsaturated flow of water in the soil zone, typically through a highly permeable geologic unit overlying a less permeable one. Water thus returns to the surface, as return flow, before or on entering a stream or groundwater.
Percolation theory was originally purposed by Broadbent and Hammersley as a mathematical theory for determining the flow of fluids through porous material. [3] An example of this is the question originally purposed by Broadbent and Hammersley: "suppose a large porous rock is submerged under water for a long time, will the water reach the center of the stone?".
The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size.