Search results
Results From The WOW.Com Content Network
Neptune's equatorial radius of 24,764 km [11] is nearly four times that of Earth. Neptune, like Uranus, is an ice giant, a subclass of giant planet, because they are smaller and have higher concentrations of volatiles than Jupiter and Saturn. [73]
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space).
In order of distance from Neptune, the regular moons are Naiad, Thalassa, Despina, Galatea, Larissa, Hippocamp, and Proteus. All but the outer two are within Neptune-synchronous orbit (Neptune's rotational period is 0.6713 day or 16 hours [20]) and thus are being tidally decelerated. Naiad, the closest regular moon, is also the second smallest ...
Neptune is 17 times the mass of Earth and is slightly more massive than its near-twin Uranus, which is 15 times the mass of Earth and slightly larger than Neptune. [a] Neptune orbits the Sun once every 164.8 years at an average distance of 30.1 astronomical units (4.50 × 10 9 km).
At the time of his first observation in December 1612, it was stationary in the sky because it had just turned retrograde that very day; because it was only beginning its yearly retrograde cycle, Neptune's motion was thought to be too slight, and its apparent size too small, to clearly appear to be a planet in Galileo's small telescope. [10]
The last time Neptune's rings were seen in detail was during a flyby in 1989 by NASA's Voyager 2 spacecraft as it journeyed beyond the solar system and into interstellar space. That historic flyby ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars.