Search results
Results From The WOW.Com Content Network
In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic. A two-tailed test is appropriate if the estimated value is greater or less than a certain range of values, for example, whether a test ...
The original example is termed a one-sided or a one-tailed test while the generalization is termed a two-sided or two-tailed test. The statement also relies on the inference that the sampling was random.
The difference between the two sample means, each denoted by X i, which appears in the numerator for all the two-sample testing approaches discussed above, is ¯ ¯ = The sample standard deviations for the two samples are approximately 0.05 and 0.11, respectively. For such small samples, a test of equality between the two population variances ...
The null hypothesis of the two-tailed test is: : = There is no universal definition of the two-tailed version of Fisher's exact test. [3] Since Boschloo's test is based on Fisher's exact test, a universal two-tailed version of Boschloo's test also doesn't exist.
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4] The parameters used are:
30 samples of 10 dots of random color (blue or red) are observed. On each sample, a two-tailed binomial test of the null hypothesis that blue and red are equally probable is performed. The first row shows the possible p-values as a function of the number of blue and red dots in the sample.
A two-tailed test may still be used but it will be less powerful than a one-tailed test, because the rejection region for a one-tailed test is concentrated on one end of the null distribution and is twice the size (5% vs. 2.5%) of each rejection region for a two-tailed test.
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...