Ad
related to: what is biconditional in geometry symbol lookup key
Search results
Results From The WOW.Com Content Network
material biconditional (material equivalence) if and only if, iff, xnor propositional logic, Boolean algebra: is true only if both A and B are false, or both A and B are true. Whether a symbol means a material biconditional or a logical equivalence, depends on the author’s style.
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.
The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), [2] and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of ...
Logical equality (also known as biconditional or exclusive nor) is an operation on two logical values, typically the values of two propositions, that produces a value of true if both operands are false or both operands are true. The truth table for p XNOR q (also written as p ↔ q, Epq, p = q, or p ≡ q) is as follows:
A symbol or word used in logic to connect propositions or sentences, forming more complex expressions that convey relationships such as conjunction, disjunction, and negation. logical consequence A relationship between statements where the truth of one or more premises necessitates the truth of a conclusion, based on the logical structure of ...
The symbol used for exclusive disjunction varies from one field of application to the next, and even depends on the properties being emphasized in a given context of discussion. In addition to the abbreviation "XOR", any of the following symbols may also be seen: + was used by George Boole in 1847. [6]
In propositional logic, biconditional introduction [1] [2] [3] is a valid rule of inference. It allows for one to infer a biconditional from two conditional statements . The rule makes it possible to introduce a biconditional statement into a logical proof .
However, these symbols are also used for material equivalence, so proper interpretation would depend on the context. Logical equivalence is different from material equivalence, although the two concepts are intrinsically related.