Search results
Results From The WOW.Com Content Network
In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the ...
The means and variances of directional quantities are all finite, so that the central limit theorem may be applied to the particular case of directional statistics. [2] This article will deal only with unit vectors in 2-dimensional space (R 2) but the method described can be extended to the general case.
Then according to the central limit theorem, the distribution of Z n approaches the normal N(0, 1 / 3 ) distribution. This convergence is shown in the picture: as n grows larger, the shape of the probability density function gets closer and closer to the Gaussian curve.
This is justified by considering the central limit theorem in the log domain (sometimes called Gibrat's law). The log-normal distribution is the maximum entropy probability distribution for a random variate X —for which the mean and variance of ln(X) are specified. [5]
This page was last edited on 1 December 2024, at 08:30 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Comparison of probability density functions, () for the sum of fair 6-sided dice to show their convergence to a normal distribution with increasing , in accordance to the central limit theorem. In the bottom-right graph, smoothed profiles of the previous graphs are rescaled, superimposed and compared with a normal distribution (black curve).
The law of iterated logarithms operates "in between" the law of large numbers and the central limit theorem.There are two versions of the law of large numbers — the weak and the strong — and they both state that the sums S n, scaled by n −1, converge to zero, respectively in probability and almost surely:
The method of moments was introduced by Pafnuty Chebyshev for proving the central limit theorem; Chebyshev cited earlier contributions by Irénée-Jules Bienaymé. [2] More recently, it has been applied by Eugene Wigner to prove Wigner's semicircle law, and has since found numerous applications in the theory of random matrices. [3]