When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/.../Jacobian_matrix_and_determinant

    The Jacobian determinant is sometimes simply referred to as "the Jacobian". The Jacobian determinant at a given point gives important information about the behavior of f near that point. For instance, the continuously differentiable function f is invertible near a point p ∈ R n if the Jacobian determinant at p is non-zero. This is the inverse ...

  3. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then

  4. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    If it is true, the Jacobian conjecture would be a variant of the inverse function theorem for polynomials. It states that if a vector-valued polynomial function has a Jacobian determinant that is an invertible polynomial (that is a nonzero constant), then it has an inverse that is also a polynomial function. It is unknown whether this is true ...

  5. Jacobian conjecture - Wikipedia

    en.wikipedia.org/wiki/Jacobian_conjecture

    The strong real Jacobian conjecture was that a real polynomial map with a nowhere vanishing Jacobian determinant has a smooth global inverse. That is equivalent to asking whether such a map is topologically a proper map , in which case it is a covering map of a simply connected manifold , hence invertible.

  6. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    The parallelogram defined by the rows of the above matrix is the one with vertices at (0, 0), (a, b), (a + c, b + d), and (c, d), as shown in the accompanying diagram. The absolute value of ad − bc is the area of the parallelogram, and thus represents the scale factor by which areas are transformed by A.

  7. Proofs related to chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Proofs_related_to_chi...

    Since the two variable change policies are symmetric, we take the upper one and multiply the result by 2. The Jacobian determinant can be calculated as ...

  8. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Difficult integrals may also be solved by simplifying the integral using a change of variables given by the corresponding Jacobian matrix and determinant. [1] Using the Jacobian determinant and the corresponding change of variable that it gives is the basis of coordinate systems such as polar, cylindrical, and spherical coordinate systems.

  9. Carl Gustav Jacob Jacobi - Wikipedia

    en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi

    Carl Gustav Jacob Jacobi (/ dʒ ə ˈ k oʊ b i /; [2] German:; 10 December 1804 – 18 February 1851) [a] was a German mathematician who made fundamental contributions to elliptic functions, dynamics, differential equations, determinants and number theory.