When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...

  3. Dinitrogen tetroxide - Wikipedia

    en.wikipedia.org/wiki/Dinitrogen_tetroxide

    The oxidation of copper by nitric acid is a complex reaction forming various nitrogen oxides of varying stability which depends on the concentration of the nitric acid, presence of oxygen, and other factors. The unstable species further react to form nitrogen dioxide which is then purified and condensed to form dinitrogen tetroxide.

  4. Nitrogen dioxide - Wikipedia

    en.wikipedia.org/wiki/Nitrogen_dioxide

    One of several nitrogen oxides, nitrogen dioxide is a reddish-brown gas. It is a paramagnetic , bent molecule with C 2v point group symmetry . Industrially, NO 2 is an intermediate in the synthesis of nitric acid , millions of tons of which are produced each year, primarily for the production of fertilizers .

  5. Stoichiometry - Wikipedia

    en.wikipedia.org/wiki/Stoichiometry

    Mole ratio: Convert moles of Cu to moles of Ag produced; Mole to mass: Convert moles of Ag to grams of Ag produced; The complete balanced equation would be: Cu + 2 AgNO 3 → Cu(NO 3) 2 + 2 Ag. For the mass to mole step, the mass of copper (16.00 g) would be converted to moles of copper by dividing the mass of copper by its molar mass: 63.55 g/mol.

  6. Standard enthalpy of formation - Wikipedia

    en.wikipedia.org/wiki/Standard_enthalpy_of_formation

    Carbon dioxide (un–ionized) Aqueous CO 2 (aq) −419.26 Bicarbonate ion Aqueous HCO 3 – −689.93 Carbonate ion Aqueous CO 3 2– −675.23 Monatomic chlorine Gas Cl 121.7 Chloride ion Aqueous Cl −: −167.2 Chlorine: Gas Cl 2: 0 Chromium: Solid Cr 0 Copper: Solid Cu 0 Copper(II) bromide: Solid CuBr2 −138.490 Copper(II) chloride: Solid ...

  7. Molar heat capacity - Wikipedia

    en.wikipedia.org/wiki/Molar_heat_capacity

    The SI unit of molar heat capacity heat is joule per kelvin per mole (J/(K⋅mol), J/(K mol), J K −1 mol −1, etc.). Since an increment of temperature of one degree Celsius is the same as an increment of one kelvin, that is the same as joule per degree Celsius per mole (J/(°C⋅mol)). In chemistry, heat amounts are still often measured in ...

  8. Standard Gibbs free energy of formation - Wikipedia

    en.wikipedia.org/wiki/Standard_Gibbs_free_energy...

    The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).

  9. Avogadro constant - Wikipedia

    en.wikipedia.org/wiki/Avogadro_constant

    The Avogadro constant, commonly denoted N A [1] or L, [2] is an SI defining constant with an exact value of 6.022 140 76 × 10 23 mol −1 (reciprocal moles). [3] [4] It is this defined number of constituent particles (usually molecules, atoms, ions, or ion pairs—in general, entities) per mole and used as a normalization factor in relating the amount of substance, n(X), in a sample of a ...