Search results
Results From The WOW.Com Content Network
The saturation current (or scale current), more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage. [1]
is the reverse saturation current, the current that flows when the diode is reverse biased (that is, is large and negative). n {\displaystyle n} is an ideality factor introduced to model a slower rate of increase than predicted by the ideal diode law.
Under reverse bias, the diode equation's exponential term is near 0, so the current is near the somewhat constant reverse current value (roughly a picoampere for silicon diodes or a microampere for germanium diodes, [1] although this is obviously a function of size).
Reverse biased: For a bias between breakdown and 0 V, the reverse current is very small and asymptotically approaches -I s. For a normal P–N rectifier diode, the reverse current through the device is in the micro-ampere (μA) range. However, this is temperature dependent, and at sufficiently high temperatures, a substantial amount of reverse ...
is the reverse saturation current of the base–emitter diode (on the order of 10 −15 to 10 −12 amperes) is the base–emitter voltage; is the diffusion constant for electrons in the p-type base; W is the base width
The effect of reverse saturation current on the I-V curve of a crystalline silicon solar cell are shown in the figure to the right. Physically, reverse saturation current is a measure of the "leakage" of carriers across the p–n junction in reverse bias.
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
In semiconductor physics, the depletion region, also called depletion layer, depletion zone, junction region, space charge region, or space charge layer, is an insulating region within a conductive, doped semiconductor material where the mobile charge carriers have diffused away, or been forced away by an electric field.