Search results
Results From The WOW.Com Content Network
Simple harmonic motion can be considered the one-dimensional projection of uniform circular motion. If an object moves with angular speed ω around a circle of radius r centered at the origin of the xy-plane, then its motion along each coordinate is simple harmonic motion with amplitude r and angular frequency ω.
A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.
Figure 2: A simple harmonic oscillator with small periodic damping term given by ¨ + ˙ + =, =, ˙ =; =.The numerical simulation of the original equation (blue solid line) is compared with averaging system (orange dashed line) and the crude averaged system (green dash-dotted line). The left plot displays the solution evolved in time and ...
For a simple harmonic oscillator released from rest, regardless of its initial displacement, the time it takes to reach the lowest potential energy point is always a quarter of its period, which is independent of its amplitude. Therefore, the Lagrangian of a simple harmonic oscillator is isochronous.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
Relaxation oscillation in the Van der Pol oscillator without external forcing. The nonlinear damping parameter is equal to μ = 5. [12] When μ = 0, i.e. there is no damping function, the equation becomes + = This is a form of the simple harmonic oscillator, and there is always conservation of energy.
This plot corresponds to solutions of the complete Langevin equation for a lightly damped harmonic oscillator, obtained using the Euler–Maruyama method. The left panel shows the time evolution of the phase portrait at different temperatures. The right panel captures the corresponding equilibrium probability distributions.
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.