Search results
Results From The WOW.Com Content Network
In mathematics, in particular in algebra, polarization is a technique for expressing a homogeneous polynomial in a simpler fashion by adjoining more variables. Specifically, given a homogeneous polynomial, polarization produces a unique symmetric multilinear form from which the original polynomial can be recovered by evaluating along a certain diagonal.
x is the argument of the complex number (angle between line to point and x-axis in polar form). The notation is less commonly used in mathematics than Euler's formula, e ix, which offers an even shorter notation for cos x + i sin x, but cis(x) is widely used as a name for this function in software libraries.
the point's direction from the pole relative to the direction of the polar axis, a ray drawn from the pole. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. [1] The pole is analogous to the origin in a Cartesian coordinate system.
In polar form, if and are real numbers then the conjugate of is . This can be shown using Euler's formula . The product of a complex number and its conjugate is a real number: a 2 + b 2 {\displaystyle a^{2}+b^{2}} (or r 2 {\displaystyle r^{2}} in polar coordinates ).
In this polar decomposition, the unit circle has been replaced by the line x = 1, the polar angle by the slope y/x, and the radius x is negative in the left half-plane. If x 2 ≠ y 2, then the unit hyperbola x 2 − y 2 = 1 and its conjugate x 2 − y 2 = −1 can be used to form a polar decomposition based on the branch of the unit hyperbola ...
The polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to the origin of a Cartesian system) is called the pole, and the ray from the pole in the reference direction is the polar axis.
As a complex number, i can be represented in rectangular form as 0 + 1i, with a zero real component and a unit imaginary component. In polar form , i can be represented as 1 × e πi /2 (or just e πi /2 ), with an absolute value (or magnitude) of 1 and an argument (or angle) of π 2 {\displaystyle {\tfrac {\pi }{2}}} radians .
This means that in polar coordinates, we are taking the cube root of the radius and dividing the polar angle by three in order to define a cube root. With this definition, the principal cube root of a negative number is a complex number, and for instance − 8 3 {\displaystyle {\sqrt[{3}]{-8}}} will not be −2, but rather 1 + i 3 ...