Ad
related to: pure strategy in game theory
Search results
Results From The WOW.Com Content Network
A mixed strategy is an assignment of a probability to each pure strategy. When enlisting mixed strategy, it is often because the game does not allow for a rational description in specifying a pure strategy for the game. This allows for a player to randomly select a pure strategy. (See the following section for an illustration.)
Strategies per player: In a game each player chooses from a set of possible actions, known as pure strategies. If the number is the same for all players, it is listed here. Number of pure strategy Nash equilibria: A Nash equilibrium is a set of strategies which represents mutual best responses to the other strategies. In other words, if every ...
Game theory is the study of mathematical models of strategic interactions. [1] ... In this game, there are two pure strategy Nash equilibria: one where both the ...
Nash proved that if mixed strategies (where a player chooses probabilities of using various pure strategies) are allowed, then every game with a finite number of players in which each player can choose from finitely many pure strategies has at least one Nash equilibrium, which might be a pure strategy for each player or might be a probability ...
In game theory, a Bayesian game is a strategic decision-making model which assumes players have incomplete information. Players may hold private information relevant to the game, meaning that the payoffs are not common knowledge. [1] Bayesian games model the outcome of player interactions using aspects of Bayesian probability.
The two pure strategy Nash equilibria are unfair; one player consistently does better than the other. The mixed strategy Nash equilibrium is inefficient: the players will miscoordinate with probability 13/25, leaving each player with an expected return of 6/5 (less than the payoff of 2 from each's less favored pure strategy equilibrium).
In game theory, the purification theorem was contributed by Nobel laureate John Harsanyi in 1973. [1] The theorem justifies a puzzling aspect of mixed strategy Nash equilibria: each player is wholly indifferent between each of the actions he puts non-zero weight on, yet he mixes them so as to make every other player also indifferent.
In game theory, normal form is a description of a game. Unlike extensive form , normal-form representations are not graphical per se , but rather represent the game by way of a matrix . While this approach can be of greater use in identifying strictly dominated strategies and Nash equilibria , some information is lost as compared to extensive ...