Search results
Results From The WOW.Com Content Network
Propionyl-CoA modification after beta oxidation of odd-chain fatty acid. Fatty acids with an odd number of carbons are found in the lipids of plants and some marine organisms. Many ruminant animals form a large amount of 3-carbon propionate during the fermentation of carbohydrates in the rumen. [4]
ACAD enzymes have been identified in animals (of which there are 9 major eukaryotic classes), as well as plants, [4] nematodes, [5] fungi, [6] and bacteria. [7] Five of these nine classes are involved in fatty acid β-oxidation (SCAD, MCAD, LCAD, VLCAD, and VLCAD2), and the other four are involved in branched chain amino acid metabolism (i3VD ...
This beta oxidation reaction is repeated until the fatty acid has been completely reduced to acetyl-CoA or, in the case of fatty acids with odd numbers of carbon atoms, acetyl-CoA and 1 molecule of propionyl-CoA per molecule of fatty acid. Each beta oxidative cut of the acyl-CoA molecule eventually yields 5 ATP molecules in oxidative ...
Plants and bacteria employ a modification of the TCA cycle called the glyoxylate cycle to produce four carbon dicarboxylic acid from two carbon acetate units. The glyoxylate cycle bypasses the two oxidative decarboxylation reactions of the TCA cycle and directly converts isocitrate through isocitrate lyase and malate synthase into malate and ...
The resulting acyl-CoA cross the mitochondria membrane and enter the process of beta oxidation. The main products of the beta oxidation pathway are acetyl-CoA (which is used in the citric acid cycle to produce energy), NADH and FADH. [16] The process of beta oxidation requires the following enzymes: acyl-CoA dehydrogenase, enoyl-CoA hydratase ...
Glyoxysomes are specialized peroxisomes found in plants (particularly in the fat storage tissues of germinating seeds) and also in filamentous fungi. Seeds that contain fats and oils include corn, soybean, sunflower, peanut and pumpkin. [1] As in all peroxisomes, in glyoxysomes the fatty acids are oxidized to acetyl-CoA by peroxisomal β ...
Oxidation by FAD; Hydration; Oxidation by NAD + Thiolysis; Production of acyl-CoA and acetyl-CoA; The final product of β-oxidation of an even-numbered fatty acid is acetyl-CoA, the entry molecule for the citric acid cycle. [3] If the fatty acid is an odd-numbered chain, the final product of β-oxidation will be propionyl-CoA.
Fatty acids are broken down to acetyl-CoA by means of beta oxidation inside the mitochondria, whereas fatty acids are synthesized from acetyl-CoA outside the mitochondrion, in the cytosol. The two pathways are distinct, not only in where they occur, but also in the reactions that occur, and the substrates that are used.