Search results
Results From The WOW.Com Content Network
Technically, a point z 0 is a pole of a function f if it is a zero of the function 1/f and 1/f is holomorphic (i.e. complex differentiable) in some neighbourhood of z 0. A function f is meromorphic in an open set U if for every point z of U there is a neighborhood of z in which at least one of f and 1/f is holomorphic.
We define N (r, f) in the same way as N(r,f) but without taking multiplicity into account (i.e. we only count the number of distinct poles). Then N 1 (r,f) is defined as the Nevanlinna counting function of critical points of f, that is
Equivalently, non-constant holomorphic functions on have unbounded images. The theorem is considerably improved by Picard's little theorem, which says that every entire function whose image omits two or more complex numbers must be constant.
In mathematics, in the field of complex analysis, a Nevanlinna function is a complex function which is an analytic function on the open upper half-plane and has a non-negative imaginary part. A Nevanlinna function maps the upper half-plane to itself or a real constant, [ 1 ] but is not necessarily injective or surjective .
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
As in complex analysis of functions of one variable, which is the case n = 1, the functions studied are holomorphic or complex analytic so that, locally, they are power series in the variables z i. Equivalently, they are locally uniform limits of polynomials; or locally square-integrable solutions to the n-dimensional Cauchy–Riemann equations.
As z travels along a closed curve C (not shown in the picture), f(z) and h(z) will trace out closed curves in the complex plane (shown in blue and red). So long as the curves never veer too far apart from each other (we require that f ( z ) remains closer to h ( z ) than the origin at all times), then the curves will wind around the origin the ...
Suppose a punctured disk D = {z : 0 < |z − c| < R} in the complex plane is given and f is a holomorphic function defined (at least) on D. The residue Res(f, c) of f at c is the coefficient a −1 of (z − c) −1 in the Laurent series expansion of f around c. Various methods exist for calculating this value, and the choice of which method to ...