Search results
Results From The WOW.Com Content Network
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]
Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt to new patterns in the data, or when the data itself is ...
In machine learning, a neural network is an artificial mathematical model used to approximate nonlinear functions. While early artificial neural networks were physical machines, [ 3 ] today they are almost always implemented in software .
He also addressed criticisms that large language models (LLMs) merely follow predefined patterns, comparing their learning process to the scientific method of observing, hypothesizing, and verifying. These statements have sparked debate, as they rely on a broad and unconventional definition of AGI—traditionally understood as AI that matches ...
They were sometimes called "iterated nets". [33] Two early influential works were the Jordan network (1986) and the Elman network (1990), which applied RNN to study cognitive psychology . In 1993, a neural history compressor system solved a "Very Deep Learning" task that required more than 1000 subsequent layers in an RNN unfolded in time.
A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]