Search results
Results From The WOW.Com Content Network
Because of this, different methods need to be used to solve BVPs. For example, the shooting method (and its variants) or global methods like finite differences, [3] Galerkin methods, [4] or collocation methods are appropriate for that class of problems. The Picard–Lindelöf theorem states that there is a unique solution, provided f is ...
The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5] It is known in Russia as the universal trigonometric substitution, [6] and also known by variant names such as half-tangent substitution or half-angle substitution.
A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial: + = Sixth-degree polynomial equations are generally impossible to solve in terms of radicals (see Abel–Ruffini theorem). This particular equation, however, may be written
In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."
The substitutions of Euler can be generalized by allowing the use of imaginary numbers. For example, in the integral +, the substitution + = + can be used. Extensions to the complex numbers allows us to use every type of Euler substitution regardless of the coefficients on the quadratic.
The identity substitution, which maps every variable to itself, is the neutral element of substitution composition. A substitution σ is called idempotent if σσ = σ, and hence tσσ = tσ for every term t. When x i ≠t i for all i, the substitution { x 1 ↦ t 1, …, x k ↦ t k} is idempotent if and only if none of the variables x i ...
If we know that (,) satisfies an equation (like the Black–Scholes equation) we are guaranteed that we can make good use of the equation in the derivation of the equation for a new function (,) defined in terms of the old if we write the old V as a function of the new v and write the new and x as functions of the old t and S.
An ODE problem can be expanded with the auxiliary variables which make the power series method trivial for an equivalent, larger system. Expanding the ODE problem with auxiliary variables produces the same coefficients (since the power series for a function is unique) at the cost of also calculating the coefficients of auxiliary equations.