Search results
Results From The WOW.Com Content Network
In this case, yielding occurs when the equivalent stress, , reaches the yield strength of the material in simple tension, . As an example, the stress state of a steel beam in compression differs from the stress state of a steel axle under torsion, even if both specimens are of the same material.
Specified Minimum Yield Strength (SMYS) means the specified minimum yield strength for steel pipe manufactured in accordance with a listed specification 1. This is a common term used in the oil and gas industry for steel pipe used under the jurisdiction of the United States Department of Transportation .
The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...
The stress–strain curve for a ductile material can be approximated using the Ramberg–Osgood equation. [2] This equation is straightforward to implement, and only requires the material's yield strength, ultimate strength, elastic modulus, and percent elongation.
Volume, modulus of elasticity, distribution of forces, and yield strength affect the impact strength of a material. In order for a material or object to have a high impact strength, the stresses must be distributed evenly throughout the object. It also must have a large volume with a low modulus of elasticity and a high material yield strength. [7]
Young's modulus is commonly measured in the International System of Units (SI) in multiples of the pascal (Pa) and common values are in the range of gigapascals (GPa). Examples: Rubber (increasing pressure: length increases quickly, meaning low ) Aluminium (increasing pressure: length increases slowly, meaning high )
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
The bulk modulus (which is usually positive) can be formally defined by the equation K = − V d P d V , {\displaystyle K=-V{\frac {dP}{dV}},} where P {\displaystyle P} is pressure, V {\displaystyle V} is the initial volume of the substance, and d P / d V {\displaystyle dP/dV} denotes the derivative of pressure with respect to volume.