Search results
Results From The WOW.Com Content Network
Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and ...
Moreover, analogous to how trigonometric functions can equivalently be written as complex exponentials, spherical harmonics also possessed an equivalent form as complex-valued functions. This was a boon for problems possessing spherical symmetry , such as those of celestial mechanics originally studied by Laplace and Legendre.
Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken ...
In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): The polar angle is denoted by θ ∈ [ 0 , π ] {\displaystyle \theta \in [0,\pi ]} : it is the angle between the z -axis and the radial vector connecting the origin to the point in ...
This is a table of orthonormalized spherical harmonics that employ the Condon-Shortley phase up to degree =. Some of these formulas are expressed in terms of the Cartesian expansion of the spherical harmonics into polynomials in x , y , z , and r .
Spherical geometry or spherics (from Ancient Greek σφαιρικά) is the geometry of the two-dimensional surface of a sphere [a] or the n-dimensional surface of higher dimensional spheres.
Because these are double angles, each of q, r, and s represents two applications of the rotation implied by an edge of the spherical triangle. From the definitions, it follows that srq = uw −1 wv −1 vu −1 = 1, which tells us that the composition of these rotations is the identity transformation. In particular, rq = s −1 gives us