Search results
Results From The WOW.Com Content Network
The horizontal chord through the focus (see picture in opening section) is called the latus rectum; one half of it is the semi-latus rectum. The latus rectum is parallel to the directrix. The semi-latus rectum is designated by the letter . From the picture one obtains =.
The horizontal and vertical components of a projectile's velocity are independent of each other. A ballistic trajectory is a parabola with homogeneous acceleration, such as in a space ship with constant acceleration in absence of other forces.
A parabola, a convex curve that is the graph of the convex function () = In geometry , a convex curve is a plane curve that has a supporting line through each of its points. There are many other equivalent definitions of these curves, going back to Archimedes .
In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward). Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second ...
The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes considered a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga 's systematic work on their properties.
The word horizontal is derived from the Latin horizon, which derives from the Greek ὁρῐ́ζων, meaning 'separating' or 'marking a boundary'. [2] The word vertical is derived from the late Latin verticalis, which is from the same root as vertex, meaning 'highest point' or more literally the 'turning point' such as in a whirlpool.
In this simple approximation, the trajectory takes the shape of a parabola. Generally when determining trajectories, it may be necessary to account for nonuniform gravitational forces and air resistance (drag and aerodynamics). This is the focus of the discipline of ballistics.
The directions of the axes of the hyperbola are determined by the ordinate of the minimum point of the corresponding parabola = + +. If the ordinate is negative, then the hyperbola's major axis (through its vertices) is horizontal, while if the ordinate is positive then the hyperbola's major axis is vertical.