Search results
Results From The WOW.Com Content Network
Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in thermal equilibrium with itself if the temperature within the system is spatially uniform and temporally constant. Systems in thermodynamic equilibrium are always in thermal equilibrium, but the
Thus, the two systems are in thermal equilibrium with each other, or they are in mutual equilibrium. Another consequence of equivalence is that thermal equilibrium is described as a transitive relation: [7]: 56 [10] If A is in thermal equilibrium with B and if B is in thermal equilibrium with C, then A is in thermal equilibrium with C.
These concepts of temperature and of thermal equilibrium are fundamental to thermodynamics and were clearly stated in the nineteenth century. The name 'zeroth law' was invented by Ralph H. Fowler in the 1930s, long after the first, second, and third laws were widely recognized.
This statement implies that thermal equilibrium is an equivalence relation on the set of thermodynamic systems under consideration. Systems are said to be in equilibrium if the small, random exchanges between them (e.g. Brownian motion) do not lead to a net change in energy. This law is tacitly assumed in every measurement of temperature.
His system is, however, closed with respect to transfer of matter. He writes: "In general, the approach to thermodynamic equilibrium will involve both thermal and work-like interactions with the surroundings." He distinguishes such thermodynamic equilibrium from thermal equilibrium, in which only thermal contact is mediating transfer of energy ...
A direct practical application of the heat equation, in conjunction with Fourier theory, in spherical coordinates, is the prediction of thermal transfer profiles and the measurement of the thermal diffusivity in polymers (Unsworth and Duarte). This dual theoretical-experimental method is applicable to rubber, various other polymeric materials ...
A few different types of equilibrium are listed below. Thermal equilibrium: When the temperature throughout a system is uniform, the system is in thermal equilibrium. Mechanical equilibrium: If at every point within a given system there is no change in pressure with time, and there is no movement of material, the system is in mechanical ...
The behavior of a thermodynamic system is summarized in the laws of Thermodynamics, which concisely are: . Zeroth law of thermodynamics; If A, B, C are thermodynamic systems such that A is in thermal equilibrium with B and B is in thermal equilibrium with C, then A is in thermal equilibrium with C.