Ad
related to: polynomials over fq
Search results
Results From The WOW.Com Content Network
The cost of a polynomial greatest common divisor between two polynomials of degree at most n can be taken as O(n 2) operations in F q using classical methods, or as O(nlog 2 (n) log(log(n)) ) operations in F q using fast methods. For polynomials h, g of degree at most n, the exponentiation h q mod g can be done with O(log(q)) polynomial ...
The polynomial factors into linear factors over a field of order q. More precisely, this polynomial is the product of all monic polynomials of degree one over a field of order q. This implies that, if q = p n then X q − X is the product of all monic irreducible polynomials over GF(p), whose degree divides n.
The map x ↦ L(x) is a linear map over any field containing F q.; The set of roots of L is an F q-vector space and is closed under the q-Frobenius map.; Conversely, if U is any F q-linear subspace of some finite field containing F q, then the polynomial that vanishes exactly on U is a linearised polynomial.
The splitting field of x q − x over F p is the unique finite field F q for q = p n. [2] Sometimes this field is denoted by GF(q). The splitting field of x 2 + 1 over F 7 is F 49; the polynomial has no roots in F 7, i.e., −1 is not a square there, because 7 is not congruent to 1 modulo 4. [3]
The Cantor–Zassenhaus algorithm takes as input a square-free polynomial (i.e. one with no repeated factors) of degree n with coefficients in a finite field whose irreducible polynomial factors are all of equal degree (algorithms exist for efficiently factoring arbitrary polynomials into a product of polynomials satisfying these conditions, for instance, () / ((), ′ ()) is a squarefree ...
In mathematics, particularly computational algebra, Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967.
On the other hand, the formal power series ring over a UFD need not be a UFD, even if the UFD is local. For example, if R is the localization of k[x, y, z]/(x 2 + y 3 + z 7) at the prime ideal (x, y, z) then R is a local ring that is a UFD, but the formal power series ring R[[X]] over R is not a UFD.
An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n such that F(x) divides x n − 1 is n = p m − 1. A primitive polynomial of degree m has m different roots in GF(p m), which all have order p m − 1, meaning that any of them generates the multiplicative group ...