When.com Web Search

  1. Ads

    related to: graphing absolute value inequalities examples with answers

Search results

  1. Results From The WOW.Com Content Network
  2. Cauchy–Schwarz inequality - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Schwarz_inequality

    where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).

  3. List of inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_inequalities

    Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount; Bhatia–Davis inequality, an upper bound on the variance of any bounded probability distribution; Bernstein inequalities (probability theory) Boole's inequality; Borell–TIS ...

  4. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    Occasionally, chained notation is used with inequalities in different directions, in which case the meaning is the logical conjunction of the inequalities between adjacent terms. For example, the defining condition of a zigzag poset is written as a 1 < a 2 > a 3 < a 4 > a 5 < a 6 > ... . Mixed chained notation is used more often with compatible ...

  5. Absolute value - Wikipedia

    en.wikipedia.org/wiki/Absolute_value

    The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example, an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces.

  6. Jensen's inequality - Wikipedia

    en.wikipedia.org/wiki/Jensen's_inequality

    Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.

  7. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]

  8. Markov's inequality - Wikipedia

    en.wikipedia.org/wiki/Markov's_inequality

    The bound combines the level with the average value of . In probability theory, Markov's inequality gives an upper bound on the probability that a non-negative random variable is greater than or equal to some positive constant. Markov's inequality is tight in the sense that for each chosen positive constant, there exists a random variable such ...

  9. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    The graph of the absolute value function. If differentiability fails at an interior point of the interval, the conclusion of Rolle's theorem may not hold. Consider the absolute value function = | |, [,]. Then f (−1) = f (1), but there is no c between −1 and 1 for which the f ′(c) is zero.