Search results
Results From The WOW.Com Content Network
A minifloat in 1 byte (8 bit) with 1 sign bit, 4 exponent bits and 3 significand bits (in short, a 1.4.3 minifloat) is demonstrated here. The exponent bias is defined as 7 to center the values around 1 to match other IEEE 754 floats [ 3 ] [ 4 ] so (for most values) the actual multiplier for exponent x is 2 x −7 .
As an 8-bit exponent was not wide enough for some operations desired for double-precision numbers, e.g. to store the product of two 32-bit numbers, [20] both Kahan's proposal and a counter-proposal by DEC therefore used 11 bits, like the time-tested 60-bit floating-point format of the CDC 6600 from 1965.
Before the widespread adoption of IEEE 754-1985, the representation and properties of floating-point data types depended on the computer manufacturer and computer model, and upon decisions made by programming-language designers. E.g., GW-BASIC's single-precision data type was the 32-bit MBF floating-point format.
A property of the single- and double-precision formats is that their encoding allows one to easily sort them without using floating-point hardware, as if the bits represented sign-magnitude integers, although it is unclear whether this was a design consideration (it seems noteworthy that the earlier IBM hexadecimal floating-point representation ...
On a typical computer system, a double-precision (64-bit) binary floating-point number has a coefficient of 53 bits (including 1 implied bit), an exponent of 11 bits, and 1 sign bit. Since 2 10 = 1024, the complete range of the positive normal floating-point numbers in this format is from 2 −1022 ≈ 2 × 10 −308 to approximately 2 1024 ≈ ...
[citation needed] Before the widespread adoption of IEEE 754-1985, the representation and properties of floating-point data types depended on the computer manufacturer and computer model, and upon decisions made by programming-language implementers. E.g., GW-BASIC's double-precision data type was the 64-bit MBF floating-point format.
An 8-bit register can store 2 8 different values. The range of integer values that can be stored in 8 bits depends on the integer representation used. With the two most common representations, the range is 0 through 255 (2 8 − 1) for representation as an binary number, and −128 (−1 × 2 7) through 127 (2 7 − 1) for representation as two's complement.
The advantage over 8-bit or 16-bit integers is that the increased dynamic range allows for more detail to be preserved in highlights and shadows for images, and avoids gamma correction. The advantage over 32-bit single-precision floating point is that it requires half the storage and bandwidth (at the expense of precision and range). [5]