Search results
Results From The WOW.Com Content Network
The fundamental fact about diagonalizable maps and matrices is expressed by the following: An matrix over a field is diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to , which is the case if and only if there exists a basis of consisting of eigenvectors of .
In fact, a given n-by-n matrix A is similar to a diagonal matrix (meaning that there is a matrix X such that X −1 AX is diagonal) if and only if it has n linearly independent eigenvectors. Such matrices are said to be diagonalizable .
The trace of a matrix is the sum of the diagonal elements. The top-right to bottom-left diagonal is sometimes described as the minor diagonal or antidiagonal. The off-diagonal entries are those not on the main diagonal. A diagonal matrix is one whose off-diagonal entries are all zero. [4] [5]
An idempotent matrix is always diagonalizable. [3] Its eigenvalues are either 0 or 1: if is a non-zero eigenvector of some idempotent matrix and its associated eigenvalue, then = = = = =, which implies {,}.
This makes normal operators, and normal elements of C*-algebras, more amenable to analysis. The spectral theorem states that a matrix is normal if and only if it is unitarily similar to a diagonal matrix, and therefore any matrix A satisfying the equation A * A = AA * is diagonalizable. (The converse does not hold because diagonalizable ...
A square matrix that does not have a complete basis of eigenvectors, and is thus not diagonalizable. Derogatory matrix: A square matrix whose minimal polynomial is of order less than n. Equivalently, at least one of its eigenvalues has at least two Jordan blocks. [3] Diagonalizable matrix: A square matrix similar to a diagonal matrix.
For example, a 2,1 represents the element at the second row and first column of the matrix. In mathematics, a matrix (pl.: matrices) is a rectangular array or table of numbers, symbols, or expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object.
In mathematics, a square matrix is said to be diagonally dominant if, for every row of the matrix, the magnitude of the diagonal entry in a row is greater than or equal to the sum of the magnitudes of all the other (off-diagonal) entries in that row. More precisely, the matrix is diagonally dominant if