When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Diagonalizable matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonalizable_matrix

    The fundamental fact about diagonalizable maps and matrices is expressed by the following: An matrix over a field is diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to , which is the case if and only if there exists a basis of consisting of eigenvectors of .

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem.

  4. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    An n × n matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces is n. Or, equivalently, if and only if A has n linearly independent eigenvectors. Not all matrices are diagonalizable; matrices that are not diagonalizable are called defective matrices. Consider the following matrix:

  5. Idempotent matrix - Wikipedia

    en.wikipedia.org/wiki/Idempotent_matrix

    An idempotent matrix is always diagonalizable. [3] Its eigenvalues are either 0 or 1: if is a non-zero eigenvector of some idempotent matrix and its associated eigenvalue, then = = = = =, which implies {,}.

  6. Companion matrix - Wikipedia

    en.wikipedia.org/wiki/Companion_matrix

    The roots of the characteristic polynomial () are the eigenvalues of ().If there are n distinct eigenvalues , …,, then () is diagonalizable as () =, where D is the diagonal matrix and V is the Vandermonde matrix corresponding to the λ 's: = [], = [].

  7. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    Two diagonalizable matrices and commute (=) if they are simultaneously diagonalizable (that is, there exists an invertible matrix such that both and are diagonal). [ 4 ] : p. 64 The converse is also true; that is, if two diagonalizable matrices commute, they are simultaneously diagonalizable. [ 5 ]

  8. Normal matrix - Wikipedia

    en.wikipedia.org/wiki/Normal_matrix

    This is because any function of a non-defective matrix acts directly on each of its eigenvalues, and the conjugate transpose of its spectral decomposition is , where is the diagonal matrix of eigenvalues. Likewise, if two normal matrices commute and are therefore simultaneously diagonalizable, any operation between these matrices also acts on ...

  9. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    The eigendecomposition or diagonalization expresses A as a product VDV −1, where D is a diagonal matrix and V is a suitable invertible matrix. [52] If A can be written in this form, it is called diagonalizable .