Search results
Results From The WOW.Com Content Network
For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2(y + 1) – 1, a true statement. It is also possible to take the variable y to be the unknown, and then the equation is solved by y = x – 1.
The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied. The set of all possible solutions is called the solution set. [5]
Microsoft Mathematics 4.0 (removed): The first freeware version, released in 32-bit and 64-bit editions in January 2011; [8] features a ribbon GUI Microsoft Math for Windows Phone (removed): A branded mobile application for Windows Phone released in 2015 specifically for South African and Tanzanian students; also known as Nokia Mobile ...
The graph of the logarithm to base 2 crosses the x axis (horizontal axis) at 1 and passes through the points with coordinates (2, 1), (4, 2), and (8, 3). For example, log 2 (8) = 3, because 2 3 = 8. The graph gets arbitrarily close to the y axis, but does not meet or intersect it.
Given two different points (x 1, y 1) and (x 2, y 2), there is exactly one line that passes through them. There are several ways to write a linear equation of this line. If x 1 ≠ x 2, the slope of the line is . Thus, a point-slope form is [3]
Cartesian coordinate system with a circle of radius 2 centered at the origin marked in red. The equation of a circle is (x − a) 2 + (y − b) 2 = r 2 where a and b are the coordinates of the center (a, b) and r is the radius. In Cartesian geometry, equations are used to describe geometric figures.
How to Solve It suggests the following steps when solving a mathematical problem: . First, you have to understand the problem. [2]After understanding, make a plan. [3]Carry out the plan.
Three-body problem [4] The General Problem Solver ( GPS ) is a particular computer program created in 1957 by Herbert Simon , J. C. Shaw , and Allen Newell intended to work as a universal problem solver, that theoretically can be used to solve every possible problem that can be formalized in a symbolic system, given the right input configuration.