When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.

  3. Synchronous orbit - Wikipedia

    en.wikipedia.org/wiki/Synchronous_orbit

    By this formula one can find the stationary orbit of an object in relation to a given body. Orbital speed (how fast a satellite is moving through space) is calculated by multiplying the angular speed of the satellite by the orbital radius.

  4. Orbit determination - Wikipedia

    en.wikipedia.org/wiki/Orbit_determination

    The observations are used in new orbit determination calculations that maintain the overall accuracy of the satellite catalog. Collision avoidance calculations may use this data to calculate the probability that one orbiting object will collide with another. A satellite's operator may decide to adjust the orbit, if the risk of collision in the ...

  5. Geostationary orbit - Wikipedia

    en.wikipedia.org/wiki/Geostationary_orbit

    This equates to an orbital speed of 3.07 kilometres per second (1.91 miles per second) and an orbital period of 1,436 minutes, one sidereal day. This ensures that the satellite will match the Earth's rotational period and has a stationary footprint on the ground. All geostationary satellites have to be located on this ring.

  6. Orbit - Wikipedia

    en.wikipedia.org/wiki/Orbit

    An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...

  7. Stationary orbit - Wikipedia

    en.wikipedia.org/wiki/Stationary_orbit

    A satellite being propelled into place, into a stationary orbit, is first fired to a special equatorial orbit called a "geostationary transfer orbit" (GTO). [1] Within this oval-shaped ( elliptical ) orbit, the satellite will alternately swing out to 22,300 miles (35,890 km) high and then back down to an altitude of only 100 miles (160 km ...

  8. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    A satellite in a low orbit (or a low part of an elliptical orbit) moves more quickly with respect to the surface of the planet than a satellite in a higher orbit (or a high part of an elliptical orbit), due to the stronger gravitational attraction closer to the planet. If thrust is applied at only one point in the satellite's orbit, it will ...

  9. Orbital state vectors - Wikipedia

    en.wikipedia.org/wiki/Orbital_state_vectors

    Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.