When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kepler triangle - Wikipedia

    en.wikipedia.org/wiki/Kepler_triangle

    If the short side of a Kepler triangle has length , the other sides will have lengths and . The area can be calculated by the standard formula for the area of right triangles (half the product of the two short sides) as s 2 2 φ {\displaystyle {\tfrac {s^{2}}{2}}{\sqrt {\varphi }}} .

  3. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  4. Square pyramid - Wikipedia

    en.wikipedia.org/wiki/Square_pyramid

    A square pyramid has five vertices, eight edges, and five faces. One face, called the base of the pyramid, is a square; the four other faces are triangles. [2] Four of the edges make up the square by connecting its four vertices. The other four edges are known as the lateral edges of the pyramid; they meet at the fifth vertex, called the apex. [3]

  5. Hypotenuse - Wikipedia

    en.wikipedia.org/wiki/Hypotenuse

    In a right triangle, the hypotenuse is the side that is opposite the right angle, while the other two sides are called the catheti or legs. [7] The length of the hypotenuse can be calculated using the square root function implied by the Pythagorean theorem. It states that the sum of the two legs squared equals the hypotenuse squared.

  6. Pythagorean Triangles - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_Triangles

    Chapter 4 considers special classes of Pythagorean triangles, including those with sides in arithmetic progression, nearly-isosceles triangles, and the relation between nearly-isosceles triangles and square triangular numbers. The next two chapters characterize the numbers that can appear in Pythagorean triples, and chapters 7–9 find sets of ...

  7. Pyramidal number - Wikipedia

    en.wikipedia.org/wiki/Pyramidal_number

    Geometric representation of the square pyramidal number 1 + 4 + 9 + 16 = 30. A pyramidal number is the number of points in a pyramid with a polygonal base and triangular sides. [1] The term often refers to square pyramidal numbers, which have a square base with four sides, but it can also refer to a pyramid with any number of sides. [2]

  8. IM 67118 - Wikipedia

    en.wikipedia.org/wiki/IM_67118

    The central square has side b − a. The light gray region is the gnomon of area A = ab. The dark gray square (of side (b − a)/2) completes the gnomon to a square of side (b + a)/2. Adding (b − a)/2 to the horizontal dimension of the completed square and subtracting it from the vertical dimension produces the desired rectangle.

  9. Pyramid (geometry) - Wikipedia

    en.wikipedia.org/wiki/Pyramid_(geometry)

    The base regularity of a pyramid's base may be classified based on the type of polygon: one example is the star pyramid in which its base is the regular star polygon. [28] The truncated pyramid is a pyramid cut off by a plane; if the truncation plane is parallel to the base of a pyramid, it is called a frustum.