Ads
related to: solve by substitution or elimination
Search results
Results From The WOW.Com Content Network
Animation of Gaussian elimination. Red row eliminates the following rows, green rows change their order. In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients.
In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."
In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as
Second, we solve the equation = for x. In both cases we are dealing with triangular matrices (L and U), which can be solved directly by forward and backward substitution without using the Gaussian elimination process (however we do need this process or equivalent to compute the LU decomposition itself).
The simplest method for solving a system of linear equations is to repeatedly eliminate variables. This method can be described as follows: In the first equation, solve for one of the variables in terms of the others. Substitute this expression into the remaining equations. This yields a system of equations with one fewer equation and unknown.
The identity substitution, which maps every variable to itself, is the neutral element of substitution composition. A substitution σ is called idempotent if σσ = σ, and hence tσσ = tσ for every term t. When x i ≠t i for all i, the substitution { x 1 ↦ t 1, …, x k ↦ t k} is idempotent if and only if none of the variables x i ...
The field of elimination theory was motivated by the need of methods for solving systems of polynomial equations.. One of the first results was Bézout's theorem, which bounds the number of solutions (in the case of two polynomials in two variables at Bézout time).
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.