Search results
Results From The WOW.Com Content Network
In a fission nuclear reactor, uranium-238 can be used to generate plutonium-239, which itself can be used in a nuclear weapon or as a nuclear-reactor fuel supply. In a typical nuclear reactor, up to one-third of the generated power comes from the fission of 239 Pu, which is not supplied as a fuel to the reactor, but rather, produced from 238 U. [5] A certain amount of production of 239
The Gilbert U-238 Atomic Energy Laboratory was packaged in a customized metal case. The Gilbert U-238 Atomic Energy Lab is a toy lab set designed to allow children to create and watch nuclear and chemical reactions using radioactive material. The Atomic Energy Lab was released by the A. C. Gilbert Company in 1950.
Plutonium-238 must be deliberately produced via neutron irradiation of Neptunium-237 but it can be easily converted into a stable plutonium oxide ceramic. Strontium-90 is easily extracted from spent nuclear fuel but must be converted into the perovskite form strontium titanate to reduce its chemical mobility, cutting power density in half.
Diagram of an RTG used on the Cassini probe. A radioisotope thermoelectric generator (RTG, RITEG), sometimes referred to as a radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the heat released by the decay of a suitable radioactive material into electricity by the Seebeck effect.
HP-19C calculator HP-29C with AC-powered battery charger. The HP-19C and HP-29C were scientific/engineering pocket calculators made by Hewlett-Packard between 1977 and 1979. They were the most advanced and last models of the "20" family (compare HP-25) and included Continuous Memory (battery-backed CMOS memory) as a standard feature.
Pu-239 is produced artificially in nuclear reactors when a neutron is absorbed by U-238, forming U-239, which then decays in a rapid two-step process into Pu-239. [22] It can then be separated from the uranium in a nuclear reprocessing plant. [23] Weapons-grade plutonium is defined as being predominantly Pu-239, typically about 93% Pu-239. [24]
Fuel temperature coefficient of reactivity is the change in reactivity of the nuclear fuel per degree change in the fuel temperature. The coefficient quantifies the amount of neutrons that the nuclear fuel (such as uranium-238) absorbs from the fission process as the fuel temperature increases.
All three isotopes are radioactive (i.e., they are radioisotopes), and the most abundant and stable is uranium-238, with a half-life of 4.4683 × 10 9 years (about the age of the Earth). Uranium-238 is an alpha emitter, decaying through the 18-member uranium series into lead-206. The decay series of uranium-235 (historically called actino ...