Search results
Results From The WOW.Com Content Network
The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square. [8] If two lines parallel to sides of a parallelogram are constructed concurrent to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area. [8]
For the general quadrilateral (with four sides not necessarily equal) Euler's quadrilateral theorem states + + + = + +, where is the length of the line segment joining the midpoints of the diagonals. It can be seen from the diagram that x = 0 {\displaystyle x=0} for a parallelogram, and so the general formula simplifies to the parallelogram law.
A square is a special case of a rhombus (equal sides, opposite equal angles), a kite (two pairs of adjacent equal sides), a trapezoid (one pair of opposite sides parallel), a parallelogram (all opposite sides parallel), a quadrilateral or tetragon (four-sided polygon), and a rectangle (opposite sides equal, right-angles), and therefore has all ...
A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).
This is a list of two-dimensional geometric shapes in Euclidean and other ... Henagon – 1 side; Digon – 2 sides; Triangle – 3 sides ... Square (regular ...
Hutton's definitions in 1795 [4]. The ancient Greek mathematician Euclid defined five types of quadrilateral, of which four had two sets of parallel sides (known in English as square, rectangle, rhombus and rhomboid) and the last did not have two sets of parallel sides – a τραπέζια (trapezia [5] literally 'table', itself from τετράς (tetrás) 'four' + πέζα (péza) 'foot ...
A crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals [4] (therefore only two sides are parallel). It is a special case of an antiparallelogram , and its angles are not right angles and not all equal, though opposite angles are equal.
Conversely, if two squares intersect in a vertex, then their two diagonals disjoint from this vertex form two opposite sides of a (possibly non-convex) midsquare quadrilateral. [4] [1] The two foci and the two diagonal midpoints of a midsquare quadrilateral form the vertices of a square. Each focus lies on an angle bisector of the two diagonals ...