When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    [1] [2] One reason for this is that they can greatly simplify differential equations that do not need to be answered with absolute precision. There are a number of ways to demonstrate the validity of the small-angle approximations. The most direct method is to truncate the Maclaurin series for each of the trigonometric functions.

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    The shaded blue and green triangles, and the red-outlined triangle are all right-angled and similar, and all contain the angle . The hypotenuse B D ¯ {\displaystyle {\overline {BD}}} of the red-outlined triangle has length 2 sin ⁡ θ {\displaystyle 2\sin \theta } , so its side D E ¯ {\displaystyle {\overline {DE}}} has length 2 sin 2 ⁡ θ ...

  4. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.

  5. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    The fixed point iteration x n+1 = cos(x n) with initial value x 0 = −1 converges to the Dottie number. Zero is the only real fixed point of the sine function; in other words the only intersection of the sine function and the identity function is sin ⁡ ( 0 ) = 0 {\displaystyle \sin(0)=0} .

  6. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...

  7. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Consider the problem of finding the positive number x with cos x = x 3. We can rephrase that as finding the zero of f(x) = cos(x) − x 3. We have f ′ (x) = −sin(x) − 3x 2. Since cos(x) ≤ 1 for all x and x 3 > 1 for x > 1, we know that our solution lies between 0 and 1.

  8. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x.

  9. Exact trigonometric values - Wikipedia

    en.wikipedia.org/wiki/Exact_trigonometric_values

    The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 45°. [ 1 ] In the table below, the label "Undefined" represents a ratio 1 : 0. {\displaystyle 1:0.}