Search results
Results From The WOW.Com Content Network
Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.
In number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is, = |,. It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number.
σ is the sum of the positive divisors of n, including 1 and n itself; s is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n; a deficient number is greater than the sum of its proper divisors; that is, s(n) < n; a perfect number equals the sum of its proper divisors; that is, s(n) = n; an abundant ...
The sum of proper divisors of a number is called its aliquot sum, so a perfect number is one that is equal to its aliquot sum. Equivalently, a perfect number is a number that is half the sum of all of its positive divisors; in symbols, σ 1 ( n ) = 2 n {\displaystyle \sigma _{1}(n)=2n} where σ 1 {\displaystyle \sigma _{1}} is the sum-of ...
The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...
The purpose of this page is to catalog new, interesting, and useful identities related to number-theoretic divisor sums, i.e., sums of an arithmetic function over the divisors of a natural number , or equivalently the Dirichlet convolution of an arithmetic function () with one:
The only odd practical number is 1, because if is an odd number greater than 2, then 2 cannot be expressed as the sum of distinct divisors of . More strongly, Srinivasan (1948) observes that other than 1 and 2, every practical number is divisible by 4 or 6 (or both).
A natural number n is called superabundant precisely when, for all m < n: < where σ denotes the sum-of-divisors function (i.e., the sum of all positive divisors of n, including n itself). The first few superabundant numbers are 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, ...