Search results
Results From The WOW.Com Content Network
In geometry, a frustum (Latin for 'morsel'); [a] (pl.: frusta or frustums) is the portion of a solid (normally a pyramid or a cone) that lies between two parallel planes cutting the solid. In the case of a pyramid, the base faces are polygonal and the side faces are trapezoidal .
The formula for the volume of a frustum of a paraboloid [23] [24] is: V = (π h/2)(r 1 2 + r 2 2), where h = height of the frustum, r 1 is the radius of the base of the frustum, and r 2 is the radius of the top of the frustum. This allows us to use a paraboloid frustum where that form appears more appropriate than a cone.
A cone with a region including its apex cut off by a plane is called a truncated cone; if the truncation plane is parallel to the cone's base, it is called a frustum. [1] An elliptical cone is a cone with an elliptical base. [ 1 ]
A square frustum, with volume equal to the height times the Heronian mean of the square areas. The Heronian mean may be used in finding the volume of a frustum of a pyramid or cone. The volume is equal to the product of the height of the frustum and the Heronian mean of the areas of the opposing parallel faces. [2]
Regular polygons; Description Figure Second moment of area Comment A filled regular (equiliteral) triangle with a side length of a = = [6] The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.
This formula assumes the beam is symmetrically circular, "r" is much greater than "h" so "r" taken at the beginning or at the end of the pulse is almost the same, and the shape of the volume is a cone frustum of depth "h".
A spherical segment Pair of parallel planes intersecting a sphere forming a spherical segment (i.e., a spherical frustum) Terminology for spherical segments.. In geometry, a spherical segment is the solid defined by cutting a sphere or a ball with a pair of parallel planes.
An open conical tube, that is, one in the shape of a frustum of a cone with both ends open, will have resonant frequencies approximately equal to those of an open cylindrical pipe of the same length. The resonant frequencies of a stopped conical tube — a complete cone or frustum with one end closed — satisfy a more complicated condition: