When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Non-covalent interaction - Wikipedia

    en.wikipedia.org/wiki/Non-covalent_interaction

    The chemical energy released in the formation of non-covalent interactions is typically on the order of 1–5 kcal/mol (1000–5000 calories per 6.02 × 10 23 molecules). [2] Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects. [3] [2]

  3. Host–guest chemistry - Wikipedia

    en.wikipedia.org/wiki/Host–guest_chemistry

    Host–guest chemistry encompasses the idea of molecular recognition and interactions through non-covalent bonding. Non-covalent bonding is critical in maintaining the 3D structure of large molecules, such as proteins and is involved in many biological processes in which large molecules bind specifically but transiently to one another.

  4. Salt bridge (protein and supramolecular) - Wikipedia

    en.wikipedia.org/wiki/Salt_bridge_(protein_and...

    Figure 1. Example of salt bridge between amino acids glutamic acid and lysine demonstrating electrostatic interaction and hydrogen bonding. In chemistry, a salt bridge is a combination of two non-covalent interactions: hydrogen bonding and ionic bonding (Figure 1).

  5. Non-covalent interactions index - Wikipedia

    en.wikipedia.org/wiki/Non-covalent_interactions...

    The Non-Covalent Interactions index, commonly referred to as simply Non-Covalent Interactions (NCI) is a visualization index based in the Electron density (ρ) and the reduced density gradient (s). It is based on the empirical observation that Non-covalent interactions can be associated with the regions of small reduced density gradient at low ...

  6. Pi-interaction - Wikipedia

    en.wikipedia.org/wiki/Pi-interaction

    In chemistry, π-effects or π-interactions are a type of non-covalent interaction that involves π systems.Just like in an electrostatic interaction where a region of negative charge interacts with a positive charge, the electron-rich π system can interact with a metal (cationic or neutral), an anion, another molecule and even another π system. [1]

  7. Molecular binding - Wikipedia

    en.wikipedia.org/wiki/Molecular_binding

    Bound molecules are sometimes called a "molecular complex"—the term generally refers to non-covalent associations. [2] Non-covalent interactions can effectively become irreversible; for example, tight binding inhibitors of enzymes can have kinetics that closely resemble

  8. Supramolecular polymer - Wikipedia

    en.wikipedia.org/wiki/Supramolecular_polymer

    Supramolecular polymers are a subset of polymers where the monomeric units are connected by reversible and highly directional secondary interactions–that is, non-covalent bonds. These non-covalent interactions include van der Waals interactions, hydrogen bonding, Coulomb or ionic interactions, π-π stacking, metal coordination, halogen ...

  9. Protein–protein interaction - Wikipedia

    en.wikipedia.org/wiki/Protein–protein_interaction

    Protein subunits assembly is guided by the establishment of non-covalent interactions in the quaternary structure of the protein. Disruption of homo-oligomers in order to return to the initial individual monomers often requires denaturation of the complex. [9]